
 
Abstract- Thyroid hormone plays an important role in hearing 
development. The exact incidence of hearing impairment in 
untreated congenital hypothyroid newborns (CH) is unknown. 
This paper presents the results of the measuring of the transient-
evoked otoacoustic emissions (TEOAE) on a population of 29 
newborns positive to the screening test for hypothyroidism. 
TEOAE were recorded in all newborns in 1 month after birth 
and before starting the L-thyroxin treatment. We performed 
both temporal and time-frequency analysis of the responses by 
means of Wavelet transform. 68 newborns who had no risk 
factor for hearing loss served as control. The comparison of the 
characteristics of temporal and frequency content of the 
responses of the two groups showed no statistically significant 
difference (p=0.01).  
Keywords - Hypothyroidism; newborns; transient-evoked 
otoacoustic emissions; Wavelet transform. 
 

I. INTRODUCTION 
 
  Congenital hypothyroidism is a common disease with an 
incidence of 1 in every 4000-5000 newborns [3]. The thyroid 
hormone (TH) is necessary for a normal development of the 
auditory system[16]: both a genetic or acquired neonatal 
thyroid hormone deficiency may result in a profound mental 
disabili ty that is often accompanied by deafness. The 
associations between thyroid disorders and auditory system 
dysfunction has been identified in both animal models and 
human patients [2-5;7-8;12;15]. 
  However, the exact incidence of hearing impairment in 
untreated congenital hypothyroid (CH) newborns is stil l 
unknown as well as the direct action of thyroxin on the 
peripheral hearing organs in humans. 
  The purpose of this study was to analyse the effects of 
thyroid hormone deficiency on the peripheral auditory system 
in humans. Transient evoked otoacoustic emissions 
(TEOAE), were used to test the micromechanical activity of 
the outer hair cells of the cochlea. In fact TEOAE are acoustic 
signals emitted by the cochlea and reflect the active processes 
that are involved in the transaction of mechanical energy into 
electrical energy [6]. One of the features of the TEOAE is 
their tight relation to the cochlea status: TEOAE are 
universally present to a various degree in all healthy cochleae, 
whereas they are not generally observed or are greatly 
reduced in ears with mild hearing losses. 
  In this study, analysis of the time-frequency properties of the 
TEOAE is therefore used to monitor the cochlear 
functionality and to compare the characteristics of  the 
waveforms recorded from two population (CH and control). 

 
II. METHODOLOGY 

 
  Transient evoked otoacoustic emissions (TEOAE) were 
recorded using a probe inserted into the outer ear canal. The 
probe contains a miniaturised microphone and a transmitter 
that delivered the acoustic stimulus. In the present study 29 
CH newborns (54 ears), born between August 1997 and April 
2000 and identified through the thyroid screening program 
implemented at the San Raffaele Hospital in Milan, were 
tested with TEOAE before starting the L-thyroxin treatment. 
68 well babies (100 ears), randomly chosen from all the 
newborns included in the Hearing Screening Program of the 
San Raffaele Hospital in Milan, were used as control group. 
  The test was performed in all newborns (control and CH) in 
1 month after birth at the most. TEOAE were recorded using 
a standard ILO88 system (Otodynamic Ltd.). Responses were 
filtered with the ILO88 default procedure (second-order high 
pass fil ter set at 330Hz, gain 1.57 and fourth-order low pass  
set at 10.6 kHz, gain 2.6) and digitalized at a rate of 25.000 
samples/s. Responses to 260 repetitions of the click-train 
(four clicks per train) were averaged according to the “non-
linear” mode of operation (i.e. a train of three clicks followed 
by a fourth click of inverse polarity and three times greater; 
this method takes advantage of the nonlinear behaviour of the 
TEOAE ) in the QuickScreen acquisition mode with a sweep 
time of 12.5 ms. Finally, average data were digitally filtered 
off-line (second order digital bandpass set at 600÷6000 Hz).   
  In all the recording sessions, the click-stimulus level ranged 
from 77 to 83 dB SPL and two replicates (A and B) of the 
responses were collected in the same recording conditions. 
  As to the PASS/FAIL criteria, a TEOAE response was 
scored as PASS when the total reproducibility was equal to or 
greater than 70%, and the reproducibility equal to or greater 
than 50% in the 1.5 kHz band and 70% in 2.2, 3.0 and 3.7 
kHz bands was found. When the stimulus stabili ty i.e. an 
estimate average correlation between the waveforms of the 
stimulus at the beginning and at the end of the recording, was 
lower than 70%, the recording is scored as FAIL (technical 
fail ). 
  Both temporal and frequency content of the whole set of 
evoked responses that passed the TEOAE test (31 ears of the 
CH newborns and 100 ears of the control newborns), were 
analysed. 
 
A. Time-amplitude analysis 
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For all subject, the root mean square value (RMS) of the 
average between A and B replicates was computed. The RMS 
of a discrete signal which consists of N equispaced samples 
x(n) is given by (1):  
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  In this investigation, RMS amplitude was computed in 11 
subwindows; the duration of each subwindow was set at 4 ms, 
with a temporal overlap of 3 ms. The first and the last 
windows started at 6 and 16 ms, respectively. Thus, for each 
emission, eleven values in time were obtained, which can be 
considered as the RMS relative to the mean value of the 
extremes of the temporal moving window. Also the RMS 
amplitude of the noise was estimated. An estimate of the 
noise was obtained considering the difference in the two 
replicate responses, A and B, divided by root 2, in order to 
take into account both constructive and destructive effect of 
the noise components on the recording [10].  
 
B. Wavelet approach 
 
  The Wavelet Transform is a linear time-frequency 
distribution which decomposes a signal into a family of basis 
function: 
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The basis function ))(/((/ tffhff oo ⋅ are scaled and 

shifted version of the same prototype function h(t), the mother 
wavelet. h(t) is a function with finite energy and centered 
around time t=0; its FT is a bandpass function centered 
around frequency fo. The Wavelets have a constant relative 
bandwidth, i.e. the quality factor Q (center 
frequency/bandwidth) is constant.  Unlike STFT, time and 
frequency resolution are not fixed over the entire time-
frequency plane: time resolution becomes good at higher  
frequencies whereas frequency resolution becomes  good at 
lower frequencies. The particular structure of the wavelet 
filters (narrow bandwidth and long duration for low-
frequency filters; broad bandwidth and brief duration for 
high-frequency filters) makes the WT approach highly 
suitable for signals with low-frequency components of long 
duration and high frequency components of brief duration as 
the TEOAE. 
  In this study the time-frequency Continuous Wavelet 
Transform was computed using as mother wavelet h(t) the 
temporal function:  
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as suggested by Tognola [13]where b was set to 20 and m to 
8. Time t and frequency f parameters were sampled using a 
uniform sampling grid: t=nT and f=kF, where T is the 

sampling period in time (0.04 ms), F is the step in frequency 
(500 Hz) and n, k are integers. We util ised a technique, based 
on the inverse WT, to decompose emissions into elementary 
components[13-14], on the basis of the spectral properties of 
band-pass fil ters of WT. For all responses, the frequency 
contents of the average of the A and B replicates were 
analysed in 8 frequency bands (from 1750 to 5250 Hz, step 
500 Hz). Decomposition of TEOAE into elementary 
components could be useful to study the characteristics of 
each components and to compare the differences between the 
hypothyroid and the control group. In particular, the RMS, the 
latency and the reproducibil ity were investigated.  
  The root mean square (RMS) of each frequency component 
for all subjects was computed from the average of A and B 
replicates using a rectangular windows from 0.04 to 20.44 
ms; the latency is defined as the time interval from the 
stimulus onset to the maximum of the envelope of the 
frequency component considered; the reproducibili ty is 
defined as the zero-lag correlation between A and B 
frequency components, computed in the temporal window 
from 6 to 18 ms, to avoid the influence of the initial artefact . 
 
C. Statistical analysis 
 
  A statistical analysis was applied to the results of the study 
of the amplitude (RMS) over frequency and time, of the 
latency and of the reproducibil ity over frequency. Statistical 
analysis was performed by the Group Comparison t test, if the 
observed samples came from a population with a normal 
distribution, or by the Wilcoxon test, if the observed samples 
didn’ t come from a normal distribution. In both case the level 
of significance was set to a probability of 0.01.   
 

III. RESULTS 
 
  23 ears (42,6%) out of the 54 who were tested from the CH 
newborns failed the TEOAE test according to the PASS/FAIL 
criteria described before. This result showed an increase in 
the population of newborns classified as fail compared with 
the average data of the hearing newborns screening program 
implemented at San Raffaele Hospital in Milan.  
  In fig.1 the average across all the ears of the RMS amplitude 
of the TEOAE classified as PASS recorded from the two 
group is presented as a function of the post-stimulus time; the 
two functions are nearly superimposed along all the post-
stimulus time. The RMS ampli tude of the noise level is on 
average 53% of the RMS amplitude of the TEOAE. 
  In fig.2 the average RMS amplitudes is presented as a 
function of frequency. The RMS amplitude of the control 
group is greater than the one of the CH newborns in all the 
frequency bands. 
  In fig. 3 the average latency is presented as a function of 
frequency. It is to notice that the two functions are nearly 
superimposed in all the frequency bands. 
  In fig.4 the reproducibili ty is presented as a function of 
frequency. The reproducibility of the control group is always 
lower than the one of the CH group, especially in the 
frequencies below 3.5 kHz.  



The statistical analysis applied to the temporal (RMS versus 
post-stimulus time) and frequency (RMS, onset latency and 
reproducibil ity versus frequency) characteristics of the 
responses of the two groups (CH and control) showed no 
statistically significant difference (p=0.01) in all the temporal 
windows and in all frequency bands. 
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Fig.1. TEOAE amplitude recorded form CH and control newborns. RMS 
value are computed in 11 temporal windows, 4 ms long and shifted on 1 ms. 
The first window is centred at 8 ms (i.e. it starts at 6 ms and ends at 10 ms). 
The curves shows the results of the average of all ears . 

 

 
Fig.2 Frequency components amplitude of TEOAE recorded form CH and 
control newborns. RMS value of each components are computed using a 
temporal window of 20.40 ms. The curves shows the result of the average of 
all the ears. 
 

 
Fig.3 Frequency components latency of TEOAE recorded from CH and 
control group. The curves shows the results of  the average of all the ears.  
 
 

 
Fig.4 Frequency components reproducibilit y of TEOAE recorded form CH 
and control newborns. The curves shows the results of the average of all the 
ears.  

 
IV. CONCLUSION 

 
  Time-frequency analysis of TEOAE by wavelet transform 
can be considered a useful tool to study the physiologic effect 
of thyroid hormone depletion on hearing and the function of 
outer hair cell . In fact the particular structure of the TEOAE 
requires a method able to discriminate both high-frequency 
components of brief duration and low-frequency components 
of long duration. The WT seems to be the best compromise 
between time-frequency resolution and interference term 
attenuation. The analysis of TEOAE could therefore provide 
indirect information on outer hair cell function that is not 
available from ABR and electrocochleography. In fact, 
otoacoustic emissions are thought to reflect the activity of 
active biological mechanisms within the cochlea responsible 
for the exquisite sensitivity, sharp frequency selectivity and 
wide dynamic range of the normal auditory system. It is now 
accepted that the OHC system is responsible for the 
generation of otoacoustic emission and that OHC motil ity is 
the cellular basis for this phenomenon [1].  
  In our investigation, no statistically significant differences 
were found between the CH and control TEOAE properties 
(RMS, latency, reproducibility) both in temporal (11 
subwindows from 6 ms to 16 ms) and frequency (8 frequency 
bands from 1750 to 5250 Hz, step 500 Hz) domain. Our 
results seems to suggest that in humans, the deficiency of 
thyroxin during the phase of maturation of the cochlea 
couldn’ t influence the normal biological activity of the OHC. 
Moreover, this could suggest that the development of the 
cochlea is little sensitive to fetal hypothyroidism, or that the 
level of circulatory thyroid hormone in these newborns during 
fetal life is sufficient for normal development. According to 
other authors [4] there could be some transfer of maternal 
thyroid hormone to the fetus. This might explain why our 
results in CH newborns differ from those reported in 
experiments with animals, where tectorial membrane 
irregularity and outer cell damage were found.  
As to the PASS/FAIL criteria, the results of this study seem to 
indicate that there is a decrease of the signal-to-noise ratio of 
the responses of the CH newborns compared with the average 
data of the local newborns screening program. This produces 
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an increase in the CH population of the newborns classified as 
fail  
  No correlation between congenital hypothyroidism and 
congenital deafness was found apart from the fact that 7 CH 
newborns who failed the TEOAE test, showed a decrease of 
the diameter of the epiphisary distal nuclei of the femur.  
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